TRS – Prof. Luca Carlone (MIT) – From SLAM to Real-time Scene Understanding: 3D Dynamic Scene Graphs and Certifiable Perception Algorithms

When: 22.12.2021 at 15:00

Where: Zoom

Abstract: Spatial perception —the robot’s ability to sense and understand the surrounding environment— is a key enabler for autonomous systems operating in complex environments, including self-driving cars and unmanned aerial vehicles. Recent advances in perception algorithms and systems have enabled robots to detect objects and create large-scale maps of an unknown environment, which are crucial capabilities for navigation, manipulation, and human-robot interaction. Despite these advances, researchers and practitioners are well aware of the brittleness of existing perception systems, and a large gap still separates robot and human perception. This talk discusses two efforts targeted at bridging this gap. The first effort targets high-level understanding. While humans are able to quickly grasp both geometric, semantic, and physical aspects of a scene, high-level scene understanding remains a challenge for robotics. I present our work on real-time metric-semantic understanding and 3D Dynamic Scene Graphs. I introduce the first generation of Spatial Perception Engines, that extend the traditional notions of mapping and SLAM, and allow a robot to build a “mental model” of the environment, including spatial concepts (e.g., humans, objects, rooms, buildings) and their relations at multiple levels of abstraction. The second effort focuses on robustness. I present recent advances in the design of certifiable perception algorithms that are robust to extreme amounts of noise and outliers and afford performance guarantees. I present fast certifiable algorithms for object pose estimation and showcase an application to vehicle pose and shape estimation in self-driving scenarios.

You can watch the seminar here