Work towards MSc degree under the supervision of Dr. Oren Salzman
When: 20.1.2022 at 11:00
Where: zoom
Abstract: We consider the problem of finding collision-free paths for curvature-constrained systems in the presence of obstacles while minimizing execution time. Specifically, we focus on the setting where a planar system can travel at some range of speeds with unbounded acceleration. This setting can model many systems, such as fixed-wing drones. Unfortunately, planning for such systems might require evaluating many (local) time-optimal transitions connecting two close-by configurations, which is computationally expensive. Existing methods either pre-compute all such transitions in a preprocessing stage or use heuristics to speed up the search, thus foregoing any guarantees on solution quality. Our key insight is that computing all the time-optimal transitions is both (i) computationally expensive and (ii) unnecessary for many problem instances. We show that by finding bounded-suboptimal solutions (solutions whose cost is bounded by 1+ε times the cost of the optimal solution for any user-provided ε) and not time-optimal solutions, one can dramatically reduce the number of time-optimal transitions used. We demonstrate using empirical evaluation that our planning framework can reduce the runtime by several orders of magnitude compared to the state-of-the-art while still providing guarantees on the quality of the solution.
You can see the seminar here